
Chapter 17.1

Introduction to the Endocrine System and Hormone Chemistry

ENDOCRINE SYSTEM

The endocrine system is a network of glands that produce and release hormones, which act as chemical messengers to regulate the body's functions.

Its primary function is to control and coordinate the body's metabolism, energy levels, reproduction, growth, development, and response to injury, stress, and mood.

The system works more slowly than the nervous system but has longer-lasting effects on various organs and tissues throughout the body.

Sometimes It's Hard to Classify an Endocrine Gland

Pancreas (mixed gland)

- –Exocrine digestive enzymes
- -Endocrine insulin / glucagon

Hepatocytes (liver cells) defy rigid classification

- -releases hormones
- -releases bile into ducts
- –releases albumin and blood-clotting factors into blood (macromolecules not hormones)

Nervous System VS Endocrine System

Both serve internal communication

- -nervous both electrical and chemical
- –endocrine only chemical

Speed and persistence of response

- -nervous reacts quickly (1-10 msec), stops quickly
- -endocrine reacts slowly (hormone release in seconds or days), effect may continue for weeks

Adaptation to long-term stimuli

- –nervous response declines (adapts quickly)
- –endocrine response persists (adapts slowly)

Area of effect

- –nervous targeted and specific (one organ)
- –endocrine general, widespread effects (many organs)

Nervous System VS Endocrine System

- Some molecules function as both hormones or neurotransmitters // norepinephrine, cholecystokinin, thyrotropin-releasing hormone, dopamine and antidiuretic hormone
- Some hormones are secreted by neuroendocrine cells (neurons) /// neurons release their secretion into the bloodstream // oxytocin and catecholamines from adrenal gland
- Both systems may affect the same target cells // the <u>neurotransmitter</u> norepinephrine and the <u>hormone glucagon both cause glycogen hydrolysis in</u> liver
- Both systems may influence the function of the other system // neurons trigger hormone secretion or hormones stimulate or inhibit activity of neurons

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 17.2	Names and Abbreviations for Hormones		
Abbreviation	Name	Source	
ACTH	Adrenocorticotropic hormone (corticotropin)	Anterior pituitary	
ADH	Antidiuretic hormone (arginine vasopressin)	Posterior pituitary	
ANP	Atrial natriuretic peptide Heart		
CRH	Corticotropin-releasing hormone Hypothalamus		
DHEA	Dehydroepiandrosterone Adrenal cortex		
EPO	Erythropoietin Kidney, liver		
FSH	Follicle-stimulating hormone Anterior pituitary		
GH	Growth hormone (somatotropin) Anterior pituitary		
GHRH	Growth hormone–releasing hormone Hypothalamus		
GnRH	Gonadotropin-releasing hormone Hypothalamus		
IGFs	Insulin-like growth factors (somatomedins) Liver, other tissues		
LH	Luteinizing hormone Anterior pituitary		
NE	Norepinephrine Adrenal medulla		
OT	Oxytocin Posterior pituitary		
PIH	Prolactin-inhibiting hormone (dopamine) Hypothalamus		
PRL	Prolactin Anterior pituitary		
PTH	Parathyroid hormone (parathormone) Parathyroids		
T ₃	Triiodothyronine Thyroid		
T ₄	Thyroxine (tetraiodothyronine) Thyroid		
TH	Thyroid hormone (T ₃ and T ₄) Thyroid		
TRH	Thyrotropin-releasing hormone Hypothalamus		
TSH	Thyroid-stimulating hormone (thyrotropin) Anterior pituitary		

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 17.5 Hormones from Sources Other than the Hypothalamus and Pituitary (continued)				
Source	Hormone	Target Organs and Tissues	Principal Effects	
Pancreatic islets	Glucagon	Primarily liver Most tissues	Stimulates amino acid absorption, gluconeogenesis, glycogen and fat breakdown; raises blood glucose and fatty acid levels Stimulates glucose and amino acid uptake; lowers blood glucose level; promotes glycogen, fat, and protein synthesis	
	Somatostatin Pancreatic polypeptide	Stomach, intestines, pancreatic islet cells Pancreas, gallbladder	Modulates digestion, nutrient absorption, and glucagon and insulin secretion Inhibits release of bile and digestive enzymes	
	Gastrin	Stomach	Stimulates acid secretion and gastric motility	
Ovaries	Estradiol	Many tissues	Stimulates female reproductive development and adolescent growth; regulates menstrual cycle and pregnancy; prepares mammary glands for lactation	
	Progesterone	Uterus, mammary glands	Regulates menstrual cycle and pregnancy; prepares mammary glands for lactation Inhibits FSH secretion	
Tootoo	Inhibin	Anterior pituitary		
Testes	Testosterone	Many tissues	Stimulates fetal and adolescent reproductive development, musculoskeletal growth, sperm production, and libido	
	Inhibin	Anterior pituitary	Inhibits FSH secretion	
Skin	Cholecalciferol	-	Precursor of calcitriol (see kidneys)	
Liver	Calcidiol Angiotensinogen Erythropoietin	— Red bone marrow	Precursor of calcitriol (see kidneys) Precursor of angiotensin II (see kidneys) Promotes red blood cell production, increases oxygen-carrying capacity of blood	
	Hepcidin Insulin-like growth factor I	Small intestine, liver Many tissues	Promotes iron absorption and mobilization Prolongs and mediates action of growth hormone	
Kidneys	Angiotensin I Calcitriol	— Small intestine	Precursor of angiotensin II, a vasoconstrictor Increases blood calcium level mainly by promoting intestinal absorption of ${\sf Ca}^{2+}$	
	Erythropoietin	Red bone marrow	Promotes red blood cell production, increases oxygen-carrying capacity of blood	
Heart	Atrial natriuretic peptide and brain natriuretic peptide	Kidney	Lower blood volume and pressure by promoting Na ⁺ and water loss	
Stomach and small intestine	Cholecystokinin Gastrin Ghrelin Peptide YY Other enteric hormones	Gallbladder, brain Stomach Brain Brain Stomach, intestines	Bile release; appetite suppression Stimulates acid secretion Stimulates hunger, initiates feeding Produces sense of satiety, terminates feeding Coordinate secretion and motility in different regions of digestive tract	
Adipose tissue	Leptin	Brain	Limits appetite over long term	
Osseous tissue	Osteocalcin	Pancreas, adipose tissue	Stimulates pancreatic beta cells to multiply, increases insulin secretion, enhances insulin sensitivity of various tissues, and reduces fat deposition	
Placenta	Estrogen, progesterone	Many tissues of mother and fetus	Stimulate fetal development and maternal bodily adaptations to pregnancy; prepare mammary glands for lactation	

Learning Objectives

Hormone chemistry?

What are the different chemical properties of hormones?

• What are hormones mechanisms of actions?

TYPES OF HORMONES

PEPTIDE HORMONES

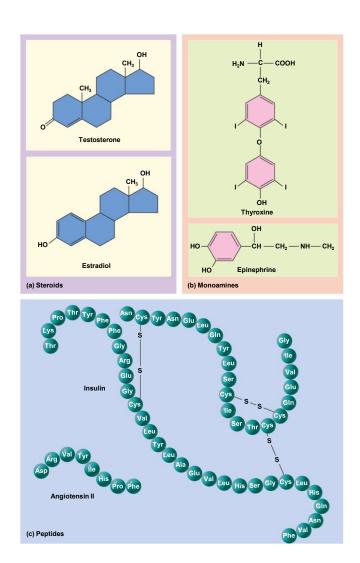
STEROID HORMONES

AMINE HORMONES

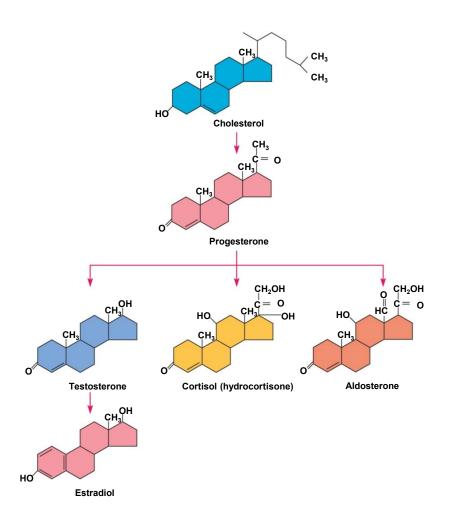
Hormone Chemistry Three Chemical Classes

Steroids // metabolized from cholesterol

• estrogens, progesterone, testosterone, cortisol, corticosterone, aldosterone, DHEA, and calcitriol

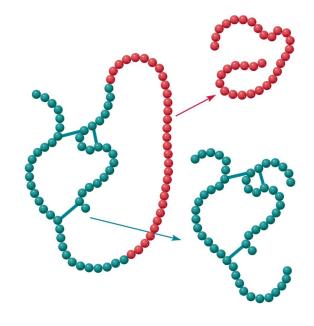

Peptides (and glycoproteins) // created from chains of amino acids

- secreted by pituitary and hypothalamus
- •oxytocin, antidiuretic hormone, releasing and inhibiting hormones, and anterior pituitary hormones

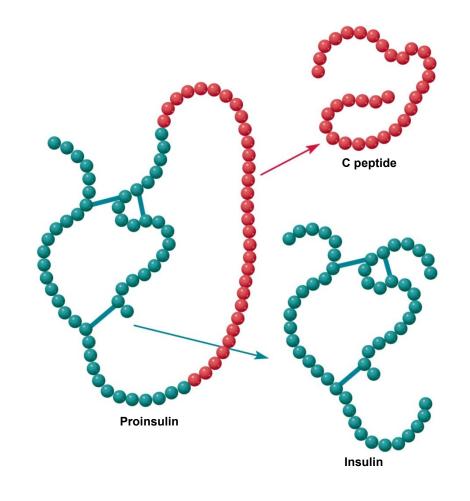

Hormone Chemistry Three Chemical Classes

Monoamines (biogenic amines)

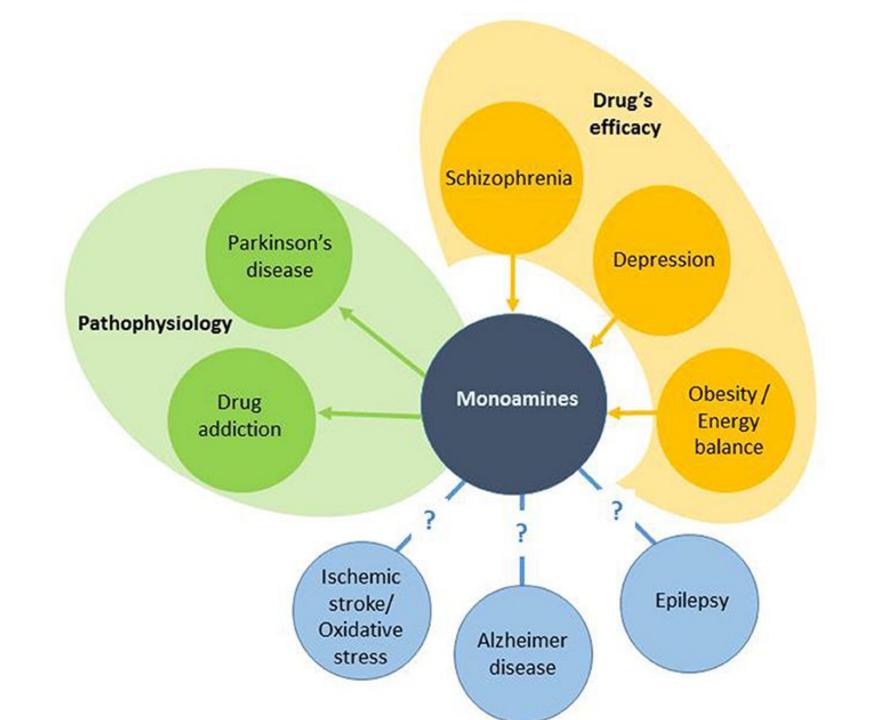
- derived from amino acids
- •secreted by adrenal, pineal, and thyroid glands
- •epinephrine, norepinephrine, melatonin, and thyroid hormone
- •Note: all hormones are made either from cholesterol or amino acids (with carbohydrate added to make glycoproteins).


Hormone Synthesis Steroid Hormones

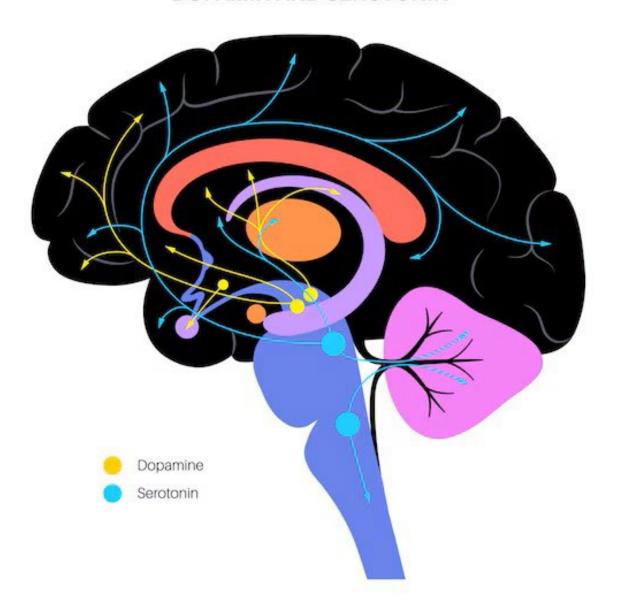
• synthesized from cholesterol – differs in functional groups attached to 4-ringed steroid backbone


Peptide Hormones

- synthesized using same metabolic pathway used by other protein // example insulin
- first formed as an inactive pre-prohormone
- several amino acids in peptide function as a signal that guides it into cisterna of rough endoplasmic reticulum
- signal peptide removed to form prohormone
- Golgi does final transformation to hormone then packages hormone for secretion


Hormone Synthesis: Insulin

- begins as pre-proinsulin, then becomes proinsulin
- when connecting peptide is removed, two polypeptide chains are formed that make up insulin



Monoamines

- Dopamine, serotonin, and melatonin are monoamine hormones synthesized from amino acid
- These are important CNS molecules
- Melatonin (the hormone released by the pineal gland) is synthesized from the amino acid tryptophan
- What holiday meal has a high concentration of tryptophan?
- Tryptophan is first transformed into the brain neutrotransmitter serotonin then it is transformed into melatonin

DOPAMIN AND SEROTONIN

Hormone Transport

Most of the monoamine and peptide hormones are hydrophilic // mix easily with blood plasma

Steroids and thyroid hormone are hydrophobic

Hydrophobic hormones need to bind to <u>transport proteins</u> (albumins and globulins which are synthesized by the liver)

"bound hormones" have certain advantages

- have longer half-life
- protected from liver enzymes
- protected from kidney filtration
- from being broken down by enzymes in the plasma

hydrophobic hormones detach from their transporter in capillaries then the hormone cross capillaries to reach target cell

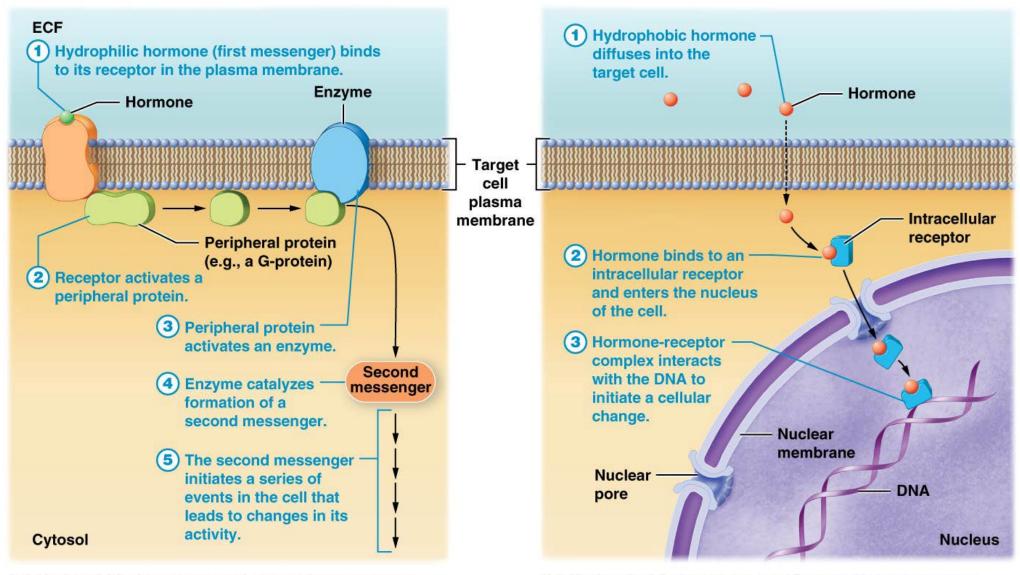
Hormone Transport

Thyroid hormone is derived from protein, but it is the exception to the rule /// hormone made from amino acids, but TH is hydrophobic and must bind to transport proteins in the plasma

- -Transporters maybe albumin, thyretin and TGB (thyroxine-binding globulin)
- -more than 99% of circulating TH is protein bound

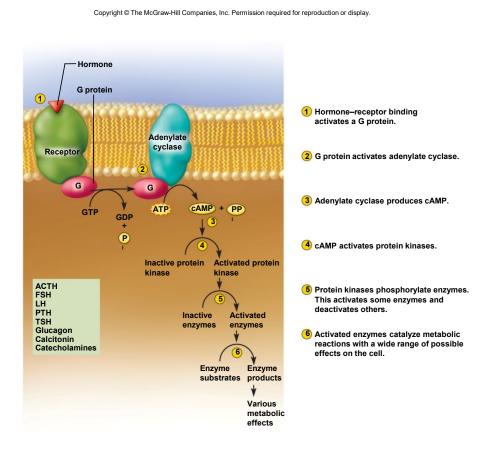
Steroid hormones bind to globulins // example - transcortin is the transport protein for cortisol

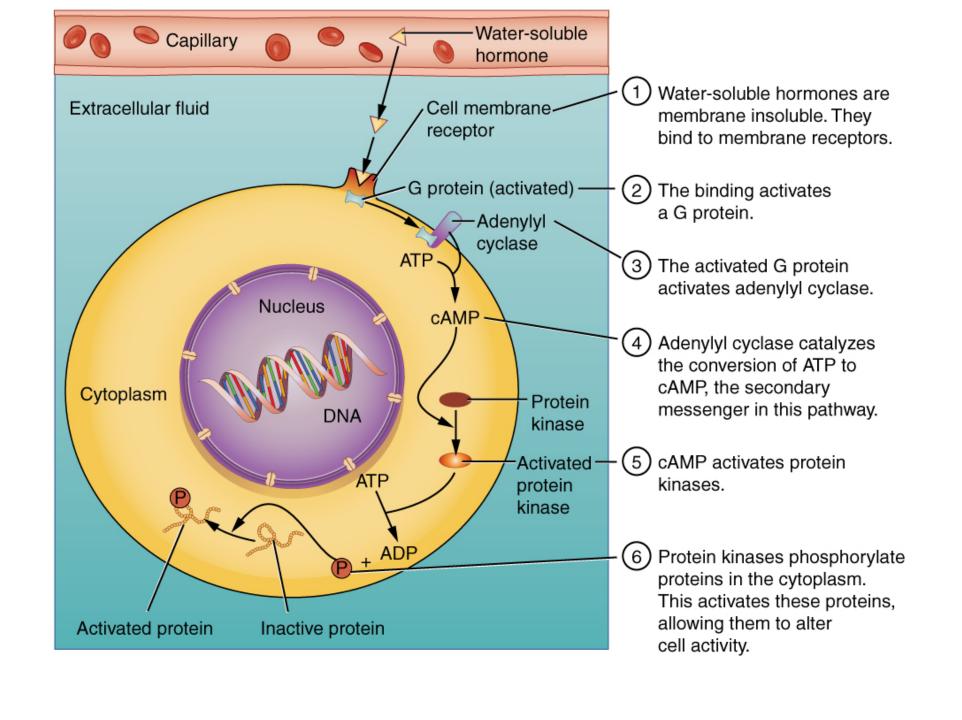
Aldosterone // short half-life


- •85% unbound
- •15% binds weakly to albumin and others

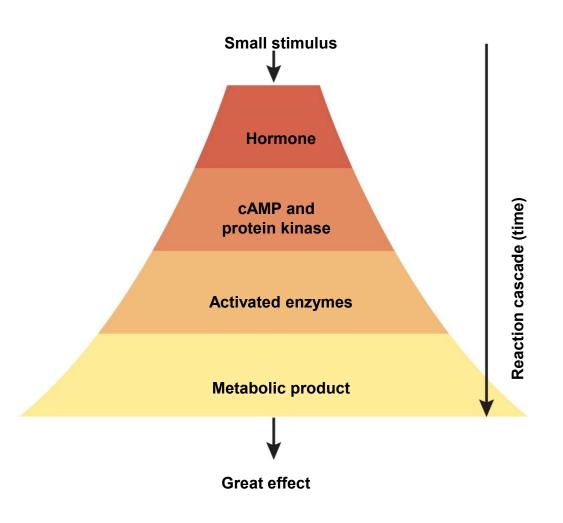
Hormone Receptors

- Hormones stimulate <u>cells if they have receptors matched to the hormone</u> (i.e. think lock and key)
- Receptors are protein or glycoprotein molecules:
 - located on plasma membrane for hydrophilic hormones
 - located in the nucleoplasm if hormone is hydrophobic
- A receptor functions as a switch to turn on a metabolic pathway after the hormone binds to the receptor
- Target cells may have a <u>few thousand</u> receptors for the hormone // concentration of receptors may change (up or down regulated)
- The receptor-hormone interactions exhibit specificity and saturation
 - each receptor is "specific" and matched to only one hormone
 - -"saturated" when all receptor molecules are occupied by hormone molecules


Mechanisms of action of hydrophilic and hydrophobic hormones. This figure presents examples of how these hormones can work.


(a) Hydrophilic hormone and second-messenger system

(b) Hydrophobic hormone and intracellular receptor mechanism


Peptides and Catecholamines Are Hydrophilic Molecules (Require Metabotrophic Receptors)

- Hormone binds to cell-surface receptor
- receptor linked to <u>second messenger</u> <u>system on other side of the</u> membrane
- activates G protein which
- · activates adenylate cyclase
- produces cAMP /// activates or inhibits enzymes
- possible metabolic reactions:
 - -synthesis
 - -secretion
 - -change membrane potentials

Enzyme Amplification

hormones are <u>potent molecules</u>

 one hormone molecule can trigger the synthesis of many enzyme molecules.

 very small stimulus produces very large effect

• low circulating hormone concentrations may cause great metabolic effect

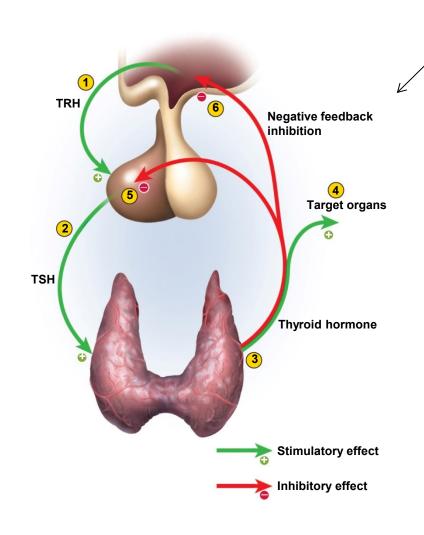
Control of Pituitary Secretion

Hormone secretion rate is not constant

- -regulated by hypothalamus and other brain centers
- –negative or positive feedback mechanisms from target organs

Hypothalamic and Cerebral Control

- —anterior pituitary lobe secretions controlled by <u>releasing hormones or</u> <u>inhibiting hormones from hypothalamus</u>
- -Examples = in cold weather, pituitary stimulated by hypothalamus to release TSH // leads to increase in metabolism and more Na-K-ATPase pumps placed in plasma membrane // this results in more heat production // part of the thermoregulation mechanism // homeostatic mechanism

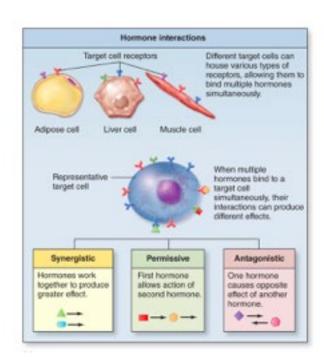

Control of Pituitary Secretion

Posterior lobe control – different mechanisms for oxytocin and ADH /// oxytocin release uses a neuroendocrine reflex // Anti diuretic hormone release is regulated by increase in blood tonicity.

- Oxytocin: neuroendocrine reflex hormone release in response to nervous system signals (childbirth and mammary gland's milk discharge)
- •suckling infant \rightarrow stimulates nerve endings \rightarrow hypothalamus \rightarrow posterior lobe \rightarrow oxytocin \rightarrow milk ejection
- •hormone may also be released in response to higher brain centers // milk ejection reflex may be triggered by a baby's cry
- Note: emotional stress can affect secretion of gonadotropins, disrupting ovulation, menstruation, and fertility

Negative and Positive Feedback Regulations

negative feedback // e.g. thyroid regulation


An increased in the target organ's hormone levels inhibits release of TSH

positive feedback // e.g. oxytocin

- -childbirth
- –stretching cervix
- -increases OT release
- -more contractions
- –self amplifying continues until delivery

Hormonal Interactions

- Permissive effect
 - a second hormone, strengthens the effects of the first
 - thyroid strengthens epinephrine's effect upon lipolysis
- Synergistic effect
 - two hormones acting together for greater effect
 - estrogen & LH are both needed for oocyte production
- Antagonistic effects
 - two hormones with opposite effects
 - insulin promotes glycogen formation & glucagon stimulates glycogen breakdown

Hormone Clearance

hormone signal must be turned off after the hormone has served its purpose

most hormones are taken up and degraded by <u>liver then</u> excred in the bile

Other hormones filtered by kidney then excreted in the urine

metabolic clearance rate (MCR)

- -rate of hormone removal from the blood
- —half-life time required to clear 50% of hormone from the blood
- -faster the MCR, the shorter is the half-life