Nerve Muscle Relationship and Neural Muscular Junction Quiz

Remember, you need to know the structure and the function!

What is this called?

The Neuromuscular Junction

What is this step called? (steps 1 and 2)

- What happens at #1?
- What happens at #2?

Excitation (steps 1 and 2)

- nerve signal opens voltage regulated calcium gated channels in synaptic knob
- calcium stimulates exocytosis of ACh from synaptic vesicles
- ACh released into synaptic cleft

This is part of what process? (steps 3 and 4)

• What is the form of regulation (type) at these gates?

Excitation (steps 3 and 4)

- two ACh molecules bind to each receptor protein, opens ligand regulated Na⁺ and K⁺ channels. (i.e. Ach is the ligand)
- Na⁺ enters shifting RMP /// goes from -90mV to +75mV /// then K⁺ exits and RMP returns to -90mV /// quick voltage shift is called the end-plate potential (EPP) // a type of action potential

This is part of what process? (step 5)

Excitation (step 5)

Voltage change (in end-plate region) spreads to nearby voltage regulated gated Na and K channels to produce an action potential just outside of the neuromuscular junction that then spreads over entire muscle surface.

- #6) What term describes the movement of the yellow arrows?
- *#*7) What event is occurring? Is it active or passive?
- #8) What do these three structures form?

Excitation-Contraction Coupling (steps 6 and 7)

- action potential (AP) spreads from sarcoplasm into T tubules
- AP flows from T tubules to sarcoplasmic reticulum
- AP opens voltage regulated gated calcium ion channels in SR
- Ca⁺² diffuse into the cytosol

This is part of what process? (steps 8 and 9)

Excitation-Contraction Coupling (steps 8 and 9)

- calcium binds to troponin in thin filaments
- troponin-tropomyosin complex changes shape and exposes active sites on actin
- this is the site where the "energized myosin head" must bind to in order for a muscle to shorten

What happens to the myosin head after it attaches to the actin binding site?

Contraction (steps 10 and 11)

- myosin ATPase enzyme in myosin head hydrolyzes ATP molecule
- This reaction occurs independent of the actin – troponin – tropomyocin event
- Myosin head is activated = the head "cocks" to extends head /// ADP + P_i remain attached to head
- head binds to actin active site forming a myosin - actin cross-bridge
- <u>Now ADP + P released from</u> <u>the myosin head</u>

This is part of what process? (steps 12 and 13)

What is released from the myosin head as it binds to actin?

The Power Stroke

Contraction (steps 12 and 13)

- Myosin head flexes
- Pulls thin filament over thick filament // Z disc move closer together
- Myosin head can not release actin until new ATP molecule binds to myosin // this "break the bridge"
- Only upon binding more ATP to the myosin head
 - myosin releases actin and the process is repeated
 - each head performs <u>5 power strokes per</u> second
 - each <u>stroke</u> utilizes <u>one</u> molecule of ATP
 - As one bridge is broken many more are formed which maintains tension in muscle

What is this step called? (steps 14 and 15)

Relaxation (steps 14 and 15)

- Stop nerve stimulation to stop ACh release
- AChE breaks down Ach // fragments reabsorbed into synaptic knob
- This stops stimulation by ACh // reverses all "downstream" events

This is part of what process? (step 16)

Is it active or passive?

- Ca⁺² pumped back into SR by active transport. // this is active transport (Why?)
- Ca⁺² binds to calsequestrin while in storage in SR
- <u>ATP is needed for</u>
 - muscle relaxation
 - <u>as well as muscle</u> <u>contraction.</u>

Relaxation (step 16)

sarcoplasmic reticulum

This is part of what process? (steps 17 and 18)

Relaxation (steps 17 and 18)

- Ca⁺² removed from troponin is pumped back into SR
- tropomyosin blocks once again the myosin binding sites
- muscle fiber ceases to produce or maintain tension
- muscle fiber returns to its resting length
 - due to recoil of elastic components & contraction of antagonistic muscles

