Chapter 17.1

Introduction to the Endocrine System

and

Hormone Chemistry

Endocrine System

endocrine system

- glands secrete hormones (messenger molecules) into blood
- blood transports hormones to target tissue
- receptors on cells (i.e. target tissue) matched to specific hormones
- if hormone is able to bind to receptor then hormone may change target tissue's metabolism
- endocrine glands the source tissue for the hormone (single cells or multicelluar)
- hormones chemical messengers /// transported in bloodstream and able to change target tissue's cellular metabolism
- endocrinology the study of this system and the diagnosis and treatment of its disorders

Key Steps (Know This!)

- 1. Hormone synthesized by endocrine gland.
- 2. Hormone released into blood.
- 3. Hormone circulates thoughout circulatory system
- 4. Hormone diffuses across capillary into interstitial fluid then diffuses to target cell with receptor.
- 5. Hormone binds to receptor
- 6. Hormone changes metabolism of target cell

- Pancreas (mixed gland)
 - Exocrine digestive enzymes
 - Endocrine insulin / glucagon

- Hepatocytes (i.e. liver cells) defy rigid classification
 - releases hormones
 - releases bile into ducts
 - releases albumin and blood-clotting factors into blood (macromolecules not hormones)

Nervous System VS Endocrine System

both serve internal communication

- nervous both electrical and chemical
- endocrine only chemical

• speed and persistence of response

- nervous reacts quickly (1-10 msec), stops quickly
- endocrine reacts slowly (hormone release in seconds or days), effect may continue for weeks

adaptation to long-term stimuli

- nervous response declines (adapts quickly)
- endocrine response persists (adapts slowly)

• area of effect

- nervous targeted and specific (one organ)
- endocrine general, widespread effects (many organs)

Nervous System VS Endocrine System

- Some molecules may function as either hormones or neurotransmitters // norepinephrine, cholecystokinin, thyrotropinreleasing hormone, dopamine and antidiuretic hormone
- Some hormones secreted by neuroendocrine cells (neurons) that release their secretion into the bloodstream // oxytocin and catecholamines
- Both systems may have effects that occur on same target cells // the neurotransmitter norepinephrine and the hormone glucagon both cause glycogen hydrolysis in liver
- Both systems may influence the function of the other system // neurons trigger hormone secretion or hormones stimulate or inhibit activity of neurons

Nervous VS Endocrine Systems Communication

(a) Nervous system

(b) Endocrine system

Major Endocrine Organs

Today, in the field of endocrinology there is a new paradigm. It is referred to as the democratization of the endocrine system.

This paradigm acknowledges every cell in the body may secrete molecules able to be transported in blood and capable of changing the cellular functions of other cells near and far.

The classical approach to learning endocrinology is to identify the structure and function of the major endocrine organs and then identify other tissues that also produce hormones. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 17.5 Hormones from Sources Other than the Hypothalamus and Pituitary (continued)				
Source	Hormone	Target Organs and Tissues	Principal Effects	
Pancreatic islets	Glucagon	Primarily liver	Stimulates amino acid absorption, gluconeogenesis, glycogen and fat breakdown; raises blood glucose and fatty acid levels	
	Insulin	Most tissues	Stimulates glucose and amino acid uptake; lowers blood glucose level; promotes glycogen, fat, and protein synthesis	
	Somatostatin	Stomach, intestines, pancreatic islet cells	Modulates digestion, nutrient absorption, and glucagon and insulin secretion	
	Pancreatic polypeptide Gastrin	Pancreas, gallbladder Stomach	Inhibits release of bile and digestive enzymes Stimulates acid secretion and gastric motility	
Ovaries	Estradiol	Many tissues	Stimulates female reproductive development and adolescent growth; regulates menstrual cycle and pregnancy; prepares mammary glands for lactation	
	Progesterone	Uterus, mammary glands	Regulates menstrual cycle and pregnancy; prepares mammary glands for lactation	
	Inhibin	Anterior pituitary	Inhibits FSH secretion	
Testes	Testosterone	Many tissues	Stimulates fetal and adolescent reproductive development, musculoskeletal growth, sperm production, and libido	
	Inhibin	Anterior pituitary	Inhibits FSH secretion	
Skin	Cholecalciferol	-	Precursor of calcitriol (see kidneys)	
Liver	Calcidiol Angiotensinogen Erythropoietin	— — Red bone marrow	Precursor of calcitriol (see kidneys) Precursor of angiotensin II (see kidneys) Promotes red blood cell production, increases oxygen-carrying capacity of blood	
	Hepcidin Insulin-like growth factor I	Small intestine, liver Many tissues	Promotes iron absorption and mobilization Prolongs and mediates action of growth hormone	
Kidneys	Angiotensin I Calcitriol	— Small intestine	Precursor of angiotensin II, a vasoconstrictor Increases blood calcium level mainly by promoting intestinal absorption of Ca ²⁺	
	Erythropoietin	Red bone marrow	Promotes red blood cell production, increases oxygen-carrying capacity of blood	
Heart	Atrial natriuretic peptide and brain natriuretic peptide	Kidney	Lower blood volume and pressure by promoting $\ensuremath{Na^{\scriptscriptstyle+}}\xspace$ and water loss	
Stomach and small intestine	Cholecystokinin Gastrin Ghrelin Peptide YY Other enteric hormones	Gallbladder, brain Stomach Brain Brain Stomach, intestines	Bile release; appetite suppression Stimulates acid secretion Stimulates hunger, initiates feeding Produces sense of satiety, terminates feeding Coordinate secretion and motility in different regions of digestive tract	
Adipose tissue	Leptin	Brain	Limits appetite over long term	
Osseous tissue	Osteocalcin	Pancreas, adipose tissue	Stimulates pancreatic beta cells to multiply, increases insulin secretion, enhances insulin sensitivity of various tissues, and reduces fat deposition	
Placenta	Estrogen, progesterone	Many tissues of mother and fetus	Stimulate fetal development and maternal bodily adaptations to pregnancy; prepare mammary glands for lactation	

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 17.2	Names and Abbreviations for Hormones		
Abbreviation	Name	Source	
ACTH	Adrenocorticotropic hormone (corticotropin)	Anterior pituitary	
ADH	Antidiuretic hormone (arginine vasopressin)	Posterior pituitary	
ANP	Atrial natriuretic peptide	Heart	
CRH	Corticotropin-releasing hormone	Hypothalamus	
DHEA	Dehydroepiandrosterone	Adrenal cortex	
EPO	Erythropoietin	Kidney, liver	
FSH	Follicle-stimulating hormone	Anterior pituitary	
GH	Growth hormone (somatotropin)	Anterior pituitary	
GHRH	Growth hormone-releasing hormone	Hypothalamus	
GnRH	Gonadotropin-releasing hormone	Hypothalamus	
IGFs	Insulin-like growth factors (somatomedins)	Liver, other tissues	
LH	Luteinizing hormone	Anterior pituitary	
NE	Norepinephrine	Adrenal medulla	
OT	Oxytocin	Posterior pituitary	
PIH	Prolactin-inhibiting hormone (dopamine)	Hypothalamus	
PRL	Prolactin	Anterior pituitary	
PTH	Parathyroid hormone (parathormone)	Parathyroids	
T ₃	Triiodothyronine	Thyroid	
T_4	Thyroxine (tetraiodothyronine)	Thyroid	
TH	Thyroid hormone (T_3 and T_4)	Thyroid	
TRH	Thyrotropin-releasing hormone	Hypothalamus	
TSH	Thyroid-stimulating hormone (thyrotropin)	Anterior pituitary	

Learning Objectives

- Hormone chemistry?
- What are the different chemical properties of hormones?
- What are hormones mechanisms of actions?

Hormone Chemistry // Three Chemical Classes

- <u>Steroids</u>

- derived from cholesterol
- estrogens, progesterone, testosterone, cortisol, corticosterone, aldosterone, DHEA, and calcitriol

- Peptides (and glycoproteins)

- created from chains of amino acids
- secreted by pituitary and hypothalamus
- oxytocin, antidiuretic hormone, releasing and inhibiting hormones, and anterior pituitary hormones

Hormone Chemistry

Monoamines (biogenic amines)

- derived from amino acids
- secreted by adrenal, pineal, and thyroid glands
- epinephrine, norepinephrine, melatonin, and thyroid hormone
- Note: all hormones are made from either cholesterol or amino acids (with carbohydrate added to make glycoproteins).

Angiotonein

(c) Peptides

Hormone Synthesis: Steroid Hormones

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 synthesized from cholesterol – differs in functional groups attached to 4-ringed steroid backbone

Peptide Hormones

- synthesized using same metabolic pathways as any other protein
- first formed as an inactive **pre-prohormone**
- several amino acids in peptide function as a signal that guides it into cisterna of rough endoplasmic reticulum
- signal peptide removed to form **prohormone**
- Golgi does final transformation to hormone packaged for secretion

Hormone Synthesis: Insulin

- begins as pre-proinsulin, then becomes proinsulin
- when connecting peptide is removed, two polypeptide chains are formed that make up insulin

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Monoamines

- These are synthesized from amino acid
- E.g. /// **Melatonin** (the hormone released by the pineal gland) is synthesized from the amino acid tryptophan
- tryptophan first transformed into the brain neutrotransmitter seratonin which is then transformed into melatonin
- E.g. /// thyroid hormone is composed of 2 tyrosine molecules (tyrosine is an amino acid)

Thyroid Hormone Synthesis

(Note: this is not on exam)

T₃ and T₄ Synthesis (not on exam)

Follicular cells

- absorb iodide (I⁻) ions from blood and store in lumen as a reactive form of iodine
- synthesize thyroglobulin and store in lumen // forms colloid // contains lots of tyrosine
- tyrosine and iodine combine to form thyroxine (T_4) bound to thyroglobulin
- stored in follicle

T₃ and T₄ Synthesis (not on exam)

• TSH

- stimulates follicular cells to remove T₄
 from thyroglobulin for release into plasma
- most T_3 is produced in liver or by target cells removing an iodine from circulating T_4
- 95% T₄ and 5% T₃

Hormone Transport

- <u>Most monoamines and peptides</u> are <u>hydrophilic</u> // mix easily with blood plasma
- <u>Steroids and thyroid hormone</u> are hydrophobic
 - Hydrophobic hormones need to bind to <u>transport proteins</u> (albumins and globulins which are synthesized by the liver)
 - "bound hormones"
 - have longer half-life
 - protected from liver enzymes and kidney filtration
 - transport proteins protect circulating hormones
 - being broken down by enzymes in the plasma and liver
 - being filtered out of the blood by the kidneys
 - after hydrophobic hormones detach from transporter then hormone may cross capillaries to reach target cell

Hormone Transport

- Thyroid hormone /// these are an exception to the rule /// protein based hormone but TH must bind to transport proteins in the plasma
 - albumin, thyretin and TGB (thyroxine-binding globulin)
 - more than 99% of circulating TH is protein bound

- Steroid hormones bind to globulins // transcortin is the transport protein for cortisol
 - Aldosterone // short half-life
 - 85% unbound
 - 15% binds weakly to albumin and others

Hormone Receptors

- A hormone may stimulate <u>only those cells with a receptor that is matched to a</u>" <u>specific</u>" hormone (i.e. think lock and key)
- Receptors are protein or glycoprotein molecules: // located on <u>plasma</u> <u>membrane</u>,
- If hydrophobic hormone then receptor for this hormone is in the <u>cytoplasm</u>, or in the <u>nucleus</u>
- A receptor functions as a switch /// turns on metabolic pathway when hormone binds to the receptor
- Any given target cell will have a <u>few thousand</u> receptors for any given hormone
- The receptor-hormone interactions exhibit specificity and saturation
 - specific receptor for each hormone
 - said to be "saturated" when all receptor molecules are occupied by hormone molecules

- hydrophobic hormones
 - penetrate plasma membrane and enter nucleus
 - act directly on the genes changing target cell physiology
 - estrogen, progesterone, thyroid hormone act on nuclear receptors
 - take several hours to days to show effect due to lag for protein synthesis

- hydrophilic hormones
 - cannot penetrate into target cell
 - must stimulate physiology indirectly
 - Second messenger systems // also called metabotrophic

Thyroid Hormone - Hydrophic

- Hydrophobic thyroid hormone <u>enters target cell by diffusion</u> (mostly as T₄ with little metabolic effect)
- within target cell, T_4 is converted to more potent T_3
- T₃ enters target cells and binds to receptors in chromatin
- activates genes
 - make a muscle protein (myosin) enhancing cardiac muscle response to sympathetic stimulation
 - strengthening heartbeat

Mechanisms of action of hydrophilic and hydrophobic hormones. This figure presents examples of how these hormones can work.

(a) Hydrophilic hormone and second-messenger system

(b) Hydrophobic hormone and intracellular receptor mechanism

Peptides and Catecholamines Are Hydrophilic Molecules (Require Metabotrophic Receptors)

Copyright © The McGraw-Hill Companies. Inc. Permission required for reproduction or display

- Hormone–receptor binding activates a G protein.
- 2 G protein activates adenylate cyclase.
- 3 Adenylate cyclase produces cAMP.
- 4 cAMP activates protein kinases.
- Frotein kinases phosphorylate enzymes. This activates some enzymes and deactivates others.
- 6 Activated enzymes catalyze metabolic reactions with a wide range of possible effects on the cell.

- hormone binds to cell-surface receptor
- receptor linked to <u>second messenger</u> system on other side of the membrane
- activates G protein which
- activates adenylate cyclase
- produces cAMP /// activates or inhibits enzymes
- possible metabolic reactions:
 - synthesis
 - secretion
 - change membrane potentials

Other Second Messengers

- diacylglycerol (diglyceride) second-messenger system
- inositol triphosphate second-messenger system

Enzyme Amplification

- hormones are extraordinarily potent molecules
- one hormone molecule can trigger the synthesis of many enzyme molecules.
- very small stimulus produces very large effect
- hormone circulating concentrations can be very low but may cause great effect

How Can Target Tissue Change Sensitivity to Hormones?

Low receptor density Weak response Increased receptor density Stronger response Increased sensitivity

(a) Up-regulation

High receptor densityReduced receptor densityDiminished responseStrong responseReduced sensitivity

(b) Down-regulation

- target cell sensitivity <u>adjusted by</u> <u>changing the number of receptors</u>
- up-regulation means number of receptors is increased // sensitivity is increased
- down-regulation reduces number of receptors
 - cell less sensitive to hormone
 - happens with long-term exposure to high hormone concentrations
 - bind to other receptors
 - converted to different hormone

Control of Pituitary Secretion

- Hormone rate of secretions are not constant
 - regulated by hypothalamus and other brain centers
 - <u>negative feedback from hormone's target organs</u>
- Hypothalamic and Cerebral Control
 - anterior lobe secretions controlled by releasing hormones or inhibiting hormones from hypothalamus
 - E.g. // in cold weather, pituitary stimulated by hypothalamus to release TSH // leads to increase in metabolism and more Na-K-ATPase pumps placed in plasma membrane = more heat production // homeostatic mechanism

Control of Pituitary Secretion

- Posterior lobe control different mechanisms for oxytocin and ADH /// oxytocin = neuroendocrine reflex // ADH = blood tonicity
- Oxytocin:
 - neuroendocrine reflex hormone release in response to nervous system signals
 - suckling infant→ stimulates nerve endings → hypothalamus
 → posterior lobe → oxytocin → milk ejection
 - Also hormone release in response to higher brain centers // milk ejection reflex -- can be triggered by a baby's cry
 - Note: emotional stress can affect secretion of gonadotropins, disrupting ovulation, menstruation, and fertility

Negative and Positive Feedback Regulations

negative feedback // thyroid regulation

- increased target organ hormone levels inhibits release of hormones
- positive feedback // childbirth
 - stretching of uterus
 - increases OT release
 - causes contractions
 - causing more stretching of uterus
 - until delivery

Hormone Interactions

- most cells <u>sensitive to more than one hormone and exhibit</u> <u>interactive effects</u>
- synergistic effects
 - multiple hormones act together for greater effect // synergism between FSH and testosterone on sperm production
- permissive effects
 - one hormone enhances the target organ's response to a second later hormone // estrogen prepares uterus for action of progesterone
- antagonistic effects
 - one hormone opposes the action of another // insulin lowers blood glucose and glycogen raises it

Hormone Clearance

- hormone signals must be turned off when they have served their purpose
- most hormones are taken up and degraded by <u>liver</u> and excred in the bile // or by the kidney and excreted in the urine
- metabolic clearance rate (MCR)
 - rate of hormone removal from the blood
 - half-life time required to clear 50% of hormone from the blood
 - faster the MCR, the shorter is the half-life