Chapter 12 Electrical Potentials

Different Types of Electrical Potentials

- Resting Membrane Potential
- Local Potential
- Action Potential
- Receptor Potential
- End Plate Potential

• All cells have a resting membrane potential

- Nerves have a resting potential when they are not stimulated
- Dendrites exhibit local potentials (similar to receptor potentials). If the stimulus is great enough then the local potential may become an action potential.
- Local potentials are graded, decremental, reversible, and may either advance or inhibit the formation of an action potential
- If stimulus is strong enough, local potential spreads to the trigger zone (axon hillock)
- If LP stimulus reaches trigger zone then it initiates an action potential that travels down axon (all or none and uni-directional)

Electrical Potentials

• Electrical potential = a difference in the concentration of charged particles separated by a barrier (the unit membrane)

(a) Distribution of charges that produce the resting membrane potential of a neuron

(b) Measurement of the resting membrane potential of a neuron

Notes:

- Voltage values may vary depending on tissue type
- What is the difference between voltage and current?

Voltage and Current

- Voltage = separation of ions
- Electrical current = the flow of ions
 - in the body, currents created by movement of ions (e.g. Na⁺ or K⁺) through gated channels in the plasma membrane
 - gated channels are opened or closed by various stimuli (voltage / ligand / mechanical)
 - some transmembrane protein channels are not regulated but simply "leak ions" (we will overlook this factor in our discussion of action potentials)
 - Key idea: regulated gates enables cell to allow ions to flow /// results in electrical currents /// creates mechanism that can be used to regulate cellular events

(b) Ligand-gated channel

(c) Mechanically-gated channel

(d) Voltage-gated channel

Note: proteins are mostly negatively charges // therefore anions of the proteins are "trapped" inside the cell // major factor in determining negative charge on inner face of plasma membrane

Resting Membrane Potential

- All living cells are polarized // called the resting membrane potential (RMP)
 - charge difference across the plasma membrane
 - -70 mV RMP
 - negative value means there are more negatively charged particles on the inside face of the membrane than on the outside face (like a little battery)
 - nervous and muscle tissue may alter their resting membrane potential // sequentially opening and closing different gates to first reverse then restore the charge across the membrane // these are excitable tissue

Resting Membrane Potential

- RMP exists because of <u>unequal electrolyte distribution across</u> <u>membrane</u>
 - between extracellular fluid (ECF) and intracellular fluid (ICF)
- RMP results from the combined effect of three factors:
 - ions diffuse down their concentration gradient through membrane channels
 - plasma membrane channels are selectively permeable and allows some ions to pass easier than others
 - electrical attraction of cations and anions to each other

Factors Contributing to the Creation of the Resting Membrane Potential

- Large cytoplasmic anions (e.g. proteins) can not escape
 - due to size or charge (phosphates, sulfates, small organic acids, proteins, ATP, and RNA)
 - these all carry negative charges
- Potassium ions (K⁺) have the greatest influence on RMP
 - plasma membrane is more permeable to K[±] than any other ion
 - leaks out until electrical charge of cytoplasmic anions attracts it back in and equilibrium is reached and net diffusion of K⁺ stops
 - K⁺ is about 40 times as concentrated in the ICF as in the ECF

Factors Contributing to the Creation of Resting Membrane Potential

- Membrane much less permeable to high concentration of sodium (Na⁺) found outside the cell
 - some sodium leak and diffuse into the cell // move down concentration gradient
 - Na⁺ is about 12 times as concentrated in the ECF as in the ICF
 - resting membrane is much less permeable to Na⁺ than K⁺

- *
- Na⁺/K⁺ ATPase pump // Transmembrane protein channel // moves out 3 Na⁺ and moves in 2 K⁺ for each ATP consumed
 - works continuously to compensate for Na+ and K+ leakage
 - requires great deal of ATP // A single cortical neuron utilizes approximately 4.7 billion ATPs per second in a resting human brain.
 - Tracing oxygen consumption, the brain accounts for about 20% of the body's energy consumption, despite only representing 2 percent of its weight. That's around 0.3 kilowatt hours (kWh) per day for an average adult, more than 100 times what the typical smartphone requires daily.Apr 27, 2023
 - necessitates glucose and oxygen be supplied to nerve tissue (energy needed to create the resting potential)
 - pump contributes about -3 mV to the cell's resting membrane potential of -70 mV

Local Potentials

- Sodium ions move into neuron at dendrites and/or somas when a neuron is stimulated
- Local potential response is initiated at the dendrite then spreads across the soma to trigger zone
- If stimulus great enough then local potential reaches the trigger zone /// achieves "threshold" and an action potential results
- Other names for local potentials are end plate potential or receptor potential

Local Potentials

- Occurs when a neuron is stimulated by <u>chemicals</u>, light, heat or mechanical <u>disturbance</u>
 - Stimulus opens the Na⁺ gates and allows
 Na⁺ to rush in to the cell
 - Na⁺ inflow neutralizes some of the internal negative charge
 - Voltage measured across the membrane drifts toward zero
 - This is known as depolarization

Local Potentials

- Occurs when membrane voltage shifts to a less
 negative value
- Na⁺ diffuses across plasma membrane producing a current
- This depolarizing event moves across neuron's membrane towards the cell's trigger zone // located at proximal end of the axon
- Current movement across dendrite and soma is the local potential
- If stimulus causing local potential strong enough so it reaches trigger zone then an action potential occurs in the axon

Four Characteristics of a Local Potentials

- Local potentials behave differently than action potentials:
 - Graded
 - vary in magnitude with stimulus strength
 - stronger stimuli open more Na⁺ gates
 - Decremental
 - get weaker the farther they spread from the point of stimulation
 - voltage shift caused by Na⁺ inflow diminishes rapidly with distance

Four Characteristics of a Local Potentials

- Local potentials behave differently than action potentials:
 - Reversible
 - when stimulation ceases flow of Na stops
 - then K⁺ diffusion out of cell // returns the cell to its normal resting potential
 - Either excitatory or inhibitory
 - E.g. / the neurotransmitter glycine make the membrane potential more negative
 - hyperpolarize membrane // less likely to produce an action potential // inhibitory

Excitation of a Neuron by a Chemical Stimulus

Action Potentials

- AP is a more dramatic change than local potential // AP is a positive feedback mechanism
- Produced by voltage-regulated ion gates in the plasma membrane at axon hillock
 - only occur where there is a high enough density of voltageregulated gates (axon hillock = trigger zone)
 - **soma** (50 -75 gates per μ m²) cannot generate an action potential
 - trigger zone (350 500 gates per μm²) where action potential is generated
 - if local potential spreads all the way to the trigger zone // will open gates at axon hillock to generate an action potential

Action Potentials

- An action potential is a rapid up-anddown shift in the membrane voltage
 - threshold critical voltage which local potentials must reach in order to open the voltageregulated gates at axon hillock
 - negative 55mV is threshold value in neurons

Action Potential

Action potential occurs so fast it is often referred to as a "spike"

Time in milliseconds (msec)

Four Phases: Resting – Depolarization – Repolarization - Hyperpolarizing

Cytosol

1. Resting state:

All voltage-gated Na⁺ and K⁺ channels are closed. The axon plasma membrane is at resting membrane potential: small buildup of negative charges along inside surface of membrane and an equal buildup of positive charges along outside surface of membrane.

Cytosol

2. Depolarizing phase:

When membrane potential of axon reaches threshold, the Na⁺ channel activation gates open. As Na⁺ ions move through these channels into the neuron, a buildup of positive charges forms along inside surface of membrane and the membrane becomes depolarized.

3. Repolarizing phase begins: Na⁺ channel inactivation gates close and K⁺ channels open. The membrane starts to become repolarized as some K⁺ ions leave the neuron and a few negative charges begin to build up along the inside surface of the membrane.

Cytosol

4. Repolarization phase continues:

K⁺ outflow continues. As more K⁺ ions leave the neuron, more negative charges build up along inside surface of membrane. K⁺ outflow eventually restores resting membrane potential. Na⁺ channel activation gates close and inactivation gates open. Return to resting state when K⁺ gates close.

Sodium and Potassium Gates Function During Action Potential

Action Potentials

*

- only a thin layer of the cytoplasm next to the cell membrane is affected /// very few ions are involved
- action potential is often called a **spike**
- called spike because AP happens so fast

characteristics of action potential (event in axon) versus a local potential (event in dendrite/soma)

all-or-none law // if threshold is reached, neuron fires at its maximum voltage

if threshold is not reached it does not fire

non-decremental - does not become weaker with distance

irreversible - once started goes to completion and can not be stopped

Action Potential

Action potential occurs so fast it is often referred to as a "spike"

The Refractory Period

- refractory period the period of resistance to stimulation
 - during an action potential and for a few milliseconds after, it is difficult or impossible to stimulate that region of a neuron to fire again.
- two phases of the refractory period
 - absolute refractory period
 - no stimulus of any strength will trigger AP
 - as long as Na⁺ gates are open
 - from action potential to RMP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Refractory Period

- two phases of the refractory period
 - relative refractory period
 - only especially strong stimulus will trigger new AP
 - K⁺ gates are still open and any affect of incoming Na⁺ is opposed by the outgoing K⁺
- refractory period is occurring only at a small patch of the neuron's membrane at one time
- other parts of the neuron can be stimulated while the small part is in refractory period

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Signal Conduction in Un-myelinated Fibers

- for AP conduction to occur, the nerve signal must travel to the end of the axon (reach synaptic knobs)
- unmyelinated fiber have voltage-regulated ion gates along its entire length
- action potential from the trigger zone causes Na⁺ to enter the axon and diffuse into adjacent regions beneath the membrane
- the depolarization excites voltage-regulated gates immediately distal to the action potential.
- Na⁺ and K⁺ gates open and close producing a new action potential
- by repetition the membrane distal to that is excited
- chain reaction continues to the end of the axon
- unidirectional

Nerve Signal Conduction Unmyelinated Fibers

Saltatory Conduction in Myelinated Axons

- voltage-gated channels needed for AP
 - fewer than 25 per μ m² in myelin-covered regions (internodes)
 - up to 12,000 per μ m² in nodes of Ranvier
- fast Na⁺ diffusion occurs between nodes /// signal weakens under myelin sheath, but still strong enough to stimulate an action potential at next node
- saltatory conduction the nerve signal seems to jump from node to node // faster than in unmyelinated axons

Saltatory Conduction

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• faster than conduction speed in an unmyelinated axons

(a) Transverse section of spinal cord

(b) Frontal section of brain

Time in milliseconds (msec)

2					Key:		
llivolts (m +30	PHASE	REPOLARIZING PHASE		Reversal of polarization		Resting membrane potential: Vo Na ⁺ channels are in the resting voltage-gated K ⁺ channels are o	oltage-gated state and closed
n ni						Stimulus causes depolarization	to threshold
tential i						Voltage-gated Na ⁺ channel activation gates are open	Absolute
Membrane -25 - 00 -20 - 00 - 00 - 00 - 00 - 00 - 00	Stimulus AFTER-HYPERPOLARIZING PHASE Time in milliseconds (msec)			 Threshold Resting membrane potential 		Voltage-gated K ⁺ channels are open; Na ⁺ channels are inactivating	period
		HASE			Voltage-gated K ⁺ channels are still open; Na ⁺ channels are in the resting state	Relative refractory period	

Cytosol

1. Resting state:

All voltage-gated Na⁺ and K⁺ channels are closed. The axon plasma membrane is at resting membrane potential: small buildup of negative charges along inside surface of membrane and an equal buildup of positive charges along outside surface of membrane.

Cytosol

2. Depolarizing phase:

When membrane potential of axon reaches threshold, the Na⁺ channel activation gates open. As Na⁺ ions move through these channels into the neuron, a buildup of positive charges forms along inside surface of membrane and the membrane becomes depolarized.

3. Repolarizing phase begins: Na⁺ channel inactivation gates close and K⁺ channels open. The membrane starts to become repolarized as some K⁺ ions leave the neuron and a few negative charges begin to build up along the inside surface of the membrane.

Cytosol

4. Repolarization phase continues:

K⁺ outflow continues. As more K⁺ ions leave the neuron, more negative charges build up along inside surface of membrane. K⁺ outflow eventually restores resting membrane potential. Na⁺ channel activation gates close and inactivation gates open. Return to resting state when K⁺ gates close.

(c) Metabotropic acetylcholine receptor

(a) Ionotropic acetylcholine receptor

(b) Ionotropic GABA receptor

(c) Metabotropic acetylcholine receptor

SMALL-MOLECULE NEUROTRANSMITTERS

SMALL-MOLECULE NEUROTRANSMITTERS

SMALL-MOLECULE NEUROTRANSMITTERS

SMALL-MOLECULE NEUROTRANSMITTERS

SMALL-MOLECULE NEUROTRANSMITTERS

© Tetra Images/AGE FotostockAmerica, Inc

Key:

Plasma membrane includes chemically gated channels Plasma membrane includes voltage-gated Na⁺ and K⁺ channels Plasma membrane includes voltage-gated Ca²⁺ channels

