Chapter 23

Composition and Properties of Urine
Composition and Properties of Urine

- **urinalysis** – the examination of the physical and chemical properties of urine
 - **appearance** - clear, almost colorless to deep amber - yellow color due to urochrome pigment from breakdown of hemoglobin (RBCs) – other colors from foods, drugs or diseases
 - cloudiness or blood could suggest urinary tract infection, trauma or stones
 - **pyuria** – pus in the urine
 - **hematuria** – blood in urine due to urinary tract infection, trauma, or kidney stones
 - **odor** - bacteria degrade urea to ammonia, some foods impart aroma
 - **specific gravity** - compared to distilled water
 - density of urine ranges from 1.001 -1.028
 - **osmolarity** - (blood = 300 mOsm/L)
 - ranges from 50 mOsm/L to 1,200 mOsm/L in dehydrated person
 - **pH** - range: 4.5 to 8.2, usually 6.0 (mildly acidic)
 - **chemical composition**: 95% water, 5% solutes
 - **Normal** to find
 - urea, NaCl, KCl, creatinine, uric acid, phosphates, sulfates, traces of calcium, magnesium, and sometimes bicarbonate, urochrome and a trace of bilirubin
 - **Abnormal** to find
 - glucose, free hemoglobin, albumin, ketones, bile pigments
Urine Volume

• **normal** volume for average adult - 1 to 2 L/day

• **polyuria** - output in excess of 2 L/day

• **oliguria** – output of less than 500 mL/day

• **anuria** - 0 to 100 mL/day
 – low output from kidney disease
 – Dehydration
 – circulatory shock
 – prostate enlargement

• low urine output of **less than 400 mL/day**
 – the body cannot maintain a safe
 – low concentration of waste in the plasma
Diabetes

• **diabetes** – any metabolic disorder resulting in chronic polyuria

• at least four forms of diabetes
 – **diabetes mellitus type 1, type 2, and gestational diabetes**
 • high concentration of glucose in renal tubule
 • glucose opposes the osmotic reabsorption of water
 • more water passes in urine (osmotic diuresis)
 • glycosuria – glucose in the urine

 – **diabetes insipidus**
 • **ADH hyposcretion** causing not enough water to be reabsorbed in the collecting duct
 • more water passes in urine
Diuretics

• any chemical that increases urine volume
 – some increase GFR
 • caffeine dilates the afferent arteriole
 – reduce tubular reabsorption of water
 • alcohol inhibits ADH secretion
 – act directly on nephron loop (loop diuretic)
 – inhibit Na⁺ - K⁺ - Cl⁻ symport
 • impairs countercurrent multiplier reducing the osmotic gradient in the renal medulla
 • collecting duct unable to reabsorb as much water as usual
 – Osmotic diuretics
 • Filtered but not reabsorbed
 • Solute may exceed Tubular Transport Maximum (i.e. glucose)

• commonly used to treat hypertension and congestive heart failure by reducing the body’s fluid volume and blood pressure
Renal Function Tests

- tests for diagnosing kidney disease
- evaluating their severity
- monitoring their progress
- determine renal clearance
- determine glomerular filtration rate
Renal Clearance

- the volume of blood plasma from which a particular waste is completely removed in 1 minute

- represents the net effect of three processes:

 - glomerular filtration of the waste
 - + amount added by tubular secretion
 - – amount removed by tubular reabsorption

renal clearance
Renal Clearance

• **determine renal clearance** (C) by collecting blood and urine samples, measuring the waste concentration in each, and measuring the rate of urine output:
 – U - waste concentration in urine – 6.0 mg/mL (urea example)
 – V - rate of urine output – 2 mL/min
 – P - waste concentration in plasma – 0.2 mg/mL
 – C – renal clearance in mL/min of waste cleared
 – C = UV/P = 60 mL/min (60 mL of blood plasma is completely cleared of urea per minute)

• compare C to normal GFR of 125 mL/min to see if normal rate of clearance is occurring - 48% which is normal for urea
Glomerular Filtration Rate

- kidney disease often results in lowering of GFR
 - need to measure patient’s GFR
 - can not use clearance rate of urea
 - some urea filtered by glomerulus is reabsorbed in the tubule
 - some urea is secreted into the tubule

- need a substance that is not secreted or reabsorbed at all so that all of it in the urine gets there by glomerular filtration
 - use inulin, a plant polysaccharide to determine GFR
 - neither reabsorbed or secreted by the renal tubule
 - inulin GFR = renal clearance on inulin

- clinically GFR is estimated from creatinine excretion
 - does not require injecting a substance or drawing blood to determine its blood concentration
 - in plasma and we know concentration