Chapter 17

Vision and Light
External Anatomy of Eye

- Superciliary ridge
- Eyebrow
- Eyelashes
- Palpebral fissure
- Lateral commissure
- Tarsal plate
- Pupil
- Superior palpebral sulcus
- Upper eyelid
- Iris
- Sclera
- Medial commissure
- Lower eyelid
- Inferior palpebral sulcus
Conjunctiva

- a transparent mucous membrane that lines *eyelids* and covers *anterior surface of eyeball*
- does not extend over *cornea*
- richly innervated and vascular (heals quickly)
- secretes a thin mucous film that prevents the eyeball from drying
Lacrimal Apparatus

- tears flow across eyeball help to wash away foreign particles, deliver O_2 and nutrients, and prevent infection with a bactericidal lysozyme

- tears flow through lacrimal punctum (opening on edge of each eyelid) to the lacrimal sac, then into the nasolacrimal duct emptying into nasal cavity
Extrinsic Eyes Muscles

- **6 muscles** attached to exterior surface of eyeball // superior, inferior, lateral, and medial rectus muscles, superior and inferior oblique muscles

- innervated by cranial nerves oculomotor (III), trochlear (IV) and abducens (VI)
Innervation of Extrinsic Eye Muscles

- superior, inferior, medial and lateral rectus muscles move the eye up, down, medially & laterally
- superior and inferior oblique mm. turn the “twelve o’clock pole” of each eye toward or away from the nose
- orbital fat – surrounds sides and back of eye, cushions eye and allows free movement, protects blood vessels, and nerves
Three Principal Components of the Eyeball

1) tunics that form the wall of the eyeball // 2) optical component that admits and focuses light // 3) neural component = the retina and optic nerve
Tunics of the Eyeball

• tunica fibrosa – outer fibrous layer
 – sclera – dense, collagenous white of the eye
 – cornea - transparent area of sclera that admits light into eye

• tunica interna – inner layer
 – Retina
 – beginning of optic nerve
Tunics of the Eyeball

- tunica vasculosa (uvea) – middle vascular layer

 - choroid – highly vascular, deeply pigmented layer behind retina

 - ciliary body – extension of choroid

 - supports lens and iris
 - Extention of choroid makes 3 structures
 - forms a muscular ring (ciliary muscle) around lens
 - secretes aqueous humor (ciliary process)
 - iris

 - iris - colored smooth muscle = diaphragm that controls size of pupil

 - its central area is open
 - melanin in chromatophores of iris - brown or black eye color
 - reduced melanin – turns blue, green, or gray color
Three Principal Components of the Eyeball

- 1) tunics that form the wall of the eyeball // 2) optical component that admits and focuses light // 3) neural component = the retina and optic nerve
Optical Components

- transparent elements that admit light rays, refract (bend) them, and focus images on the retina

- **cornea**
 - transparent cover on anterior surface of eyeball

- **aqueous humor**
 - fills anterior chamber
 - serous fluid posterior to cornea
 - anterior to lens
 - reabsorbed by scleral venous sinus (canal of Schlemm)
 - continuously produced and reabsorbed at same rate
Optical Components

• lens
 – lens fibers – flattened, tightly compressed, transparent cells that form lens
 – suspended by suspensory ligaments from ciliary body
 – changes shape to help focus light
 • rounded with no tension or flattened with pull of suspensory ligaments

• vitreous body (humor)
 – fills vitreous chamber
 – jelly fills space between lens and retina
Aqueous Humor

- released by ciliary body into posterior chamber, passes through pupil then flows into anterior chamber
- reabsorbed into canal of Schlemm
Neural Components
Neural Components

• includes retina and optic nerve

• retina
 – forms as an outgrowth of the diencephalon
 – attached to the rest of the eye only at optic disc and at ora serrata
 – pressed against rear of eyeball by vitreous humor
 – detached retina causes blurry areas in field of vision and leads to blindness
Neural Components

- May examine retina with ophthalmoscope

 // Here is what you will see:

 - **macula lutea** – a patch of cells on visual axis of eye

 - **fovea centralis** – a pit in center of macula lutea

 - the blood vessels of the retina

 - optic disc
• **macula lutea** - cells on the visual axis of eye (3 mm)

 – *fovea centralis* - center of macula; finely detailed images due to packed receptor cells

 – Only area in body where you have direct evaluation of blood vessels
Test for Blind Spot

- **optic disk** – the blind spot
 - optic nerve exits posterior surface of eyeball
 - no receptor cells at that location

- blind spot - use test to illustrate the blind spot (close eye, stare at X and the red dot disappears)

- visual filling - brain fills in green bar across blind spot area
Cataracts

- clouding of lens

- lens fibers darken with age

- fluid-filled bubbles and clefts filled with debris appear between the fibers

- induced by diabetes, smoking, drugs, ultraviolet radiation, and certain viruses

- able to replace natural lens with plastic one
Glaucoma

- Elevated pressure within the eye due to obstruction of scleral venous sinus and improper drainage of aqueous humor

- Death of retinal cells due to compression of blood vessels and lack of oxygen
 - Illusory flashes of light are an early symptom
 - Colored halos around lights are late symptom
 - Lost vision cannot be restored

- Intraocular pressure measured with tonometer
Formation of an Image (1 of 2)

- light passes through lens to form tiny inverted image on retina

- iris // pupil diameter controlled by two sets of contractile elements
 - pupillary constrictor - smooth muscle encircling the pupil // parasympathetic stimulation narrows pupil
 - pupillary dilator – spoke like myoepithelial cells // sympathetic stimulation widens pupil
Formation of an Image (2 of 2)

- pupillary constriction and dilation
 - occurs in two situations
 - when light intensity changes
 - when our gaze shifts between distant and nearby objects

- photopupillary reflex
 - pupillary constriction in response to light
 - consensual light reflex = both pupils constrict even if only one eye is illuminated
Emmetropia vs Near Response

- **emmetropia** = state in which the eye is relaxed and focused on an object more than 6 m (20 ft) away

 - light rays coming from distant objects are essentially parallel

 - distant rays focused onto retina without any required adjustment to lens // the eye evolved to focus on distant objects / not near objects!

 - light rays coming from a closer object are too divergent to be focused without effort // requires a near response to see object
The Near Response

• adjustments to close range vision requires three processes

 – **convergence of eyes** // eyes orient their visual axis towards object

 – **constriction of pupil** // blocks peripheral light rays and reduces spherical aberration (blurry edges)

 – **accommodation of lens** // change in the curvature of the lens that enables you to focus on nearby objects

• **ciliary muscle contracts, lens takes convex shape**

• light refracted more strongly and focused onto retina

• **near point of vision** – closest an object can be and still come into focus
Accommodation of Lens

(a) Distant vision (emmetropia)
- Ciliary muscle relaxed
- Suspensory ligament taut
- Lens thins

(b) Near vision (accommodation)
- Ciliary muscle contracted
- Suspensory ligament relaxed
- Lens thickens

lens flatter

lens thicker
Emmetropia and Near Response

Emmetropia

Distant object

Convergence

Close object
Emmetropia and Near Response

Emmetropia

Relatively thin lens

Relatively dilated pupil

Fovea

Pupillary miosis and lens accommodation

Relatively thick lens

Relatively constricted pupil
Common Defects of Image Formation

(a) Emmetropia (normal) (b) Hyperopia (farsightedness) (c) Myopia (nearsightedness)
Sensory Transduction in the Retina

• conversion of light energy into action potentials occurs in the retina

• structure of retina // pigment epithelium
 – most posterior part of retina // absorbs stray light so visual image is not degraded
Sensory Transduction in the Retina

- structure of retina // neural components
 - rear of the eye forward // photoreceptor cells – absorb light and generate a chemical or electrical signal
 - rods, cones, and certain ganglion cells
 - only rods and cones produce visual images

- bipolar cells – synapse with rods and cones and are first-order neurons of the visual pathway

- ganglion cells – largest neurons in the retina and are the second-order neurons of the visual pathway
Schematic Layers of the Retina

- 130 million rods and 6.5 million cones in retina

- only 1.2 million nerve fibers in optic nerve

- neuronal convergence and information processing in retina before signals reach brain
 - multiple rod or cone cells synapse on one bipolar cell
 - multiple bipolar cells synapse on one ganglion cell
Photoreceptor Cells

- light absorbing cells // derived from same stem cells as ependymal cells of the brain
 - rod cells
 - responsible for night vision (also called scotopic vision or monochromatic vision)
 - outer segment – modified cilium specialized to absorb light
 - stack of 1,000 membranous discs studded with globular proteins, the visual pigment, rhodopsin
 - inner segment – contains organelles sitting atop cell body with nucleus
Photoreceptor Cells

• light absorbing cells

 – cone cells

 • Color vision (also called, photopic or day vision)

 • similar except outer segment tapers

 • outer segment tapers to a point

 • plasma membrane in-foldings form discs
Histology - Layers of Retina

- pigment epithelium
- rod and cone cells
- bipolar cells
 - rods & cones synapse on bipolar cells
 - bipolar cells synapse on ganglion cells
- ganglion cells contain sensory pigment – melanopsin
 - single layer of large neurons near vitreous
 - axons form optic nerve
 - absorb light and transmit signals to brainstem // detect light intensity only
Visual Pigments

• cones contain **photopsin** (iodopsin)

 – retinal moiety same as in rods

 – **opsin** moiety contain different amino acid sequences that determine wavelengths of light absorbed

 – **3 kinds of cones** // identical in appearance, but absorb different wavelengths of light to produce color vision
Visual Pigments

- rods contain visual pigment = **rhodopsin** (visual purple)
 - two major parts of molecule
 - **opsin** - protein portion embedded in disc membrane of rod’s outer segment
 - **retinal** (retinene) - a vitamin A derivative
 - has absorption peak at wavelength of 500 nm // cannot distinguish one color from another
Location of Visual Pigments

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
In the dark

6. Opsin and cis-retinal enzymatically combine to regenerate rhodopsin

5. Trans-retinal is enzymatically converted back to cis-retinal

In the light

1. Rhodopsin absorbs photon of light

2. Cis-retinal isomerizes to trans-retinal

3. Opsin triggers reaction cascade that breaks down cGMP

4. Trans-retinal separates from opsins

Cessation of dark current

Signals created in optic nerve
Generating the Optic Nerve Signal Rhodopsin
Bleaching/Regeneration

- rhodopsin absorbs light, converted from bent shape in dark (cis-retinal) to straight (trans-retinal)
 - retinal dissociates from opsin (bleaching)
 - 5 minutes to regenerate 50% of bleached rhodopsin

- cones are faster to regenerate their photopsin – 90 seconds for 50%

1. Rhodopsin absorbs photon of light
2. Cis-retinal isomerizes to trans-retinal
3. Opsin triggers reaction cascade that breaks down cGMP
4. Trans-retinal separates from opsin
5. Trans-retinal enzymatically converted back to cis-retinal
6. Opsin and cis-retinal enzymatically combine to regenerate rhodopsin
Generating Visual Signals

(a) In the dark (b) In the light

1. Rhodopsin absorbs no light
2. Rod cell releases glutamate
3. Bipolar cell inhibited
4. No synaptic activity here
5. No signal in optic nerve fiber

1. Rhodopsin absorbs light
2. Glutamate secretion ceases
3. Bipolar cell no longer inhibited
4. Bipolar cell releases neurotransmitter
5. Signal in optic nerve fiber
Generating Optic Nerve Signals

• in dark, rods steadily release the neurotransmitter, glutamate from basal end of cell

• when rods absorb light, glutamate secretion ceases

• bipolar cells are sensitive to these on and off pulses of glutamate secretion
 – some bipolar cells inhibited by glutamate and excited when secretion stops // these cells excited by rising light intensities
 – other bipolar cells are excited by glutamate and respond when light intensity drops

• when bipolar cells detect fluctuations in light intensity, they stimulate ganglion cells directly or indirectly

• ganglion cells are the only retinal cells that produce action potentials

• ganglion cells respond to the bipolar cells with rising and falling firing frequencies

• via optic nerve, these changes provide visual signals to the brain
Light and Dark Adaptation

• light adaptation (walk out into sunlight)

 – pupil constriction and pain from over stimulated retinas

 – pupils constrict to reduce pain & intensity

 – color vision and acuity below normal for 5 to 10 minutes

 – time needed for pigment bleaching to adjust retinal sensitivity to high light intensity

 – rod vision nonfunctional
Light and Dark Adaptation

• dark adaptation (turn lights off)

 – dilation of pupils occurs
 – rod pigment was bleached by lights
 – in dark, rhodopsin regenerates faster than it bleaches
 – in a minute or two night (scotopic) vision begins to function
 – after 20 to 30 minutes the amount of regenerated rhodopsin is sufficient for your eyes to reach maximum sensitivity
Scotopic System (Night Vision)

- rods sensitive – react even in dim light
 - extensive neuronal convergence
 - 600 rods converge on 1 bipolar cell
 - many bipolar converge on each ganglion cell
 - results in high degree of spatial summation
 - low resolution system only
 - cannot resolve finely detailed images

- one ganglion cells receives information from 1 mm² of retina producing only a coarse image

- edges of retina have widely-spaced rod cells // act as motion detectors
Color Vision
Photopic System (Day Vision)

• fovea contains only 4000 tiny cone cells (no rods)
 – no neuronal convergence
 – each foveal cone cell has “private line to brain”

• high-resolution color vision // little spatial summation so less sensitivity to dim light
Color Blindness

- Color blindness – have a hereditary alteration or lack of one photopsin or another

- Most common is red-green color blindness
 - Results from lack of either L or M cones
 - Causes difficulty distinguishing these related shades from each other
 - Occurs in 8% of males, and 0.5% in females (sex-linkage)
Stereoscopic Vision (Stereopsis)

- **stereoscopic vision** is depth perception - ability to judge distance to objects
 - requires two eyes with overlapping visual fields which allows each eye to look at the same object from different angles
 - **panoramic vision** has eyes on sides of head (horse or rodents – alert to predators but no depth perception)
Stereoscopic Vision (Stereopsis)

- fixation point // point in space in which the eyes are focused
 - looking at object within 100 feet, each eye views from slightly different angle
 - provides brain with information used to judge position of objects relative to fixation point
Retinal Basis of Stereoscopic Vision
Visual Projection Pathway

- bipolar cells of retina are **first-order neurons**

- retinal ganglion cells are **second-order neurons** whose axons form optic nerve
 - two optic nerves combine to form **optic chiasm**
 - half the fibers cross over to the opposite side of the brain (**hemidecussation**) and chiasm splits to form **optic tracts**

 - right cerebral hemisphere sees objects in the left visual field because their images fall on the right half of each retina

 - each side of brain sees what is on side where it has motor control over limbs
Visual Projection Pathway

- optic tracts pass laterally around the hypothalamus with most of their axons ending in the lateral geniculate nucleus of the thalamus

- third-order neurons arise here and form the optic radiation of fibers in the white matter of the cerebrum
 - project to primary visual cortex of occipital lobe where conscious visual sensation occurs
 - a few optic nerve fibers project to midbrain and terminate in the superior colliculi and pretectal nuclei
 - **superior colliculi** controls visual reflexes of extrinsic eye muscles
 - pretectal nuclei are involved in photopupillary and accommodation reflexes
Visual Projection Pathway

Fixation point

Right eye

Uncrossed (ipsilateral) fiber

Crossed (contralateral) fiber

Optic radiation

Occipital lobe (visual cortex)

Optic nerve

Optic chiasm

Pretectal nucleus

Lateral geniculate nucleus of thalamus

Superior colliculus

Optic tract

Left eye
Visual Information Processing

• some processing begins in retina
 – adjustments for contrast, brightness, motion and stereopsis

• primary visual cortex is connected by association tracts to visual association areas in parietal and temporal lobes which process retinal data from occipital lobes
 – object location, motion, color, shape, boundaries
 – store visual memories (recognize printed words)